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Messages

* Significant redundancy and inefficiencies in
MANET routing

* Should be able to improve existing algorithms
by incorporating context

e Adapt algorithms to the situation



What is Context?

e Context:

— the parts of [communications]
not directly communicated
that influence its meaning or
effect (Modified from
dictionary.com )

— any information that can be
used to characterize the
situation of an entity (Dey)

e Situations

— external semantic
interpretations of context

— objects having properties and
standing in relations to one
another

* Episodes
— Situations in time




Context Aware Cognitive Radio
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Communication Link
1 for transfer of data in message and replication at recipient location

Message Context Received

Context In
Communications i (e

* Related insights from
previous work (IPA v1,2):

— Shared context between
sender and receiver is
critical to i
communications orgpar S Cocsra

— Knowing you have a o e
shared context can
greatly reduce bandwidth
requirements

— Open problem of how a
cognitive radio “knows”
and shares its operational
context

e Significant overhead in
routing as networks scale
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Hazy-Sighted Link State Routing

e Basic design
— Send out link state
updates when links fail

— Send out updates at
regular intervals

* Intervals double when no
links break until reach a
limit
* Doubles # of hops
e Other considerations
— Detect routing loops

— Unidirectional support "
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Higher-Order Hazy-Sighted Routing

Compression results were for a
network running HSLS

Predict with contextual
information?
— Wait out expected short
interruptions
* Queue data

— Soft predictive re-routing when
longer interruptions expected

Prioritize based on social network
— Combine with DTN techniques

Build internal learning models and
update only when deviates from
model

— Detect when nodes will be

moving out of range in near
future
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Bubble-RAP for Disruption Tolerant

Networks / \
e Assumptions: ‘{J// //A

Suhsub ¢ ity ',

— Radios correspond to people

— People tend to cluster - ! -—--
\ “iuhmm.mum[} /
— Some people are more ‘ V o i
interconnected (Kevin Bacon) :fi |
Source a Sub community
* Forward packet to better .
connected radios until reaches T Global Community
desired bubble | |
* Algorithms for learning bubbles R s e i
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* Do better: o I “
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patterns of movement? /Y -
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Exploiting Preferred Routes

e Capacity Problem

Artery Nodes Increase Capacity

: L -

* Preferred Routes / Artery
Nodes simplify routes and in
some situations can increase A
capacity

— Some situations decrease
capacity!

* Topology analyses could reveal
when would be effective

Artery Nodes Decrease Capacity




TABLE IV

Scenario 1 Scenario 1
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EVEN WITH ALL OTHER PARAMETERS HELD CONSTANT, VARYING THE OBSERVATIONS (0), AcTiow: (A), DECISION PROCESSES (D), GoaLs (G), OR
I CoNTEXT (C) CAN LEAD TO RADICALLY DIFFERENT OUTCOMES
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* Different algorithms
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Takeaways

* Significant redundanc

and inefficiencies in
MANET routing

* Should be able to
Improve existing
algorithms by
Incorporating context

* Adapt algorithms to
the situation
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