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COGNITIVE RADIO BASICS



Cognitive Radio Definition
• Joe Mitolla “a really smart radio that would be self-

aware, RF-aware, user-aware, and that would include
language technology and machine vision along with a
lot of high-fidelity knowledge of the radio environment.”

Source: Patric Mannion, “Smart radios stretch spectrum,” EE Times, Dec. 5, 2005 
http://www.eetimes.com/document.asp?doc_id=1157956

http://www.eetimes.com/document.asp?doc_id=1157956


Radio Cognition Capability Levels

Level Capability Task Characteristics
0 Pre-programmed The radio has no model-based reasoning capability
1 Goal-driven Goal-driven choice of RF band, air interface, and protocol
2 Context Awareness Infers external communications context (minimum user 

involvement)
3 Radio Aware Flexible reasoning about internal and network 

architectures
4 Capable of Planning Reasons over goals as a function of time, space, and 

context
5 Conducts Negotiations Expresses arguments for plans/ alternatives to user, peers, 

networks
6 Learns Fluents Autonomously determines the structure of the environment
7 Adapts Plans Autonomously modifies plans as learned fluents change
8 Adapts Protocols Autonomously proposes and negotiates new protocols

Source: J. Mitola III, “Cognitive Radio: Model-Based Competence for Software Radio,” 
Licentiate Thesis, The Royal Institute of Technology (KTH), Stockholm , Sweden, 1999.



Cognitive Radio Applications
• Dynamic spectrum access
• Dynamic spectrum markets
• Spectrum management
• Link adaptation
• Communications in adverse conditions
• Electronic warfare



Research Opportunities
• Validation and verification for cognitive radios
• Intelligent agent design methods

• Learning methods
• Architectures
• Meta-cognitive methods

• Signal detection and classification
• SDR platforms and architectures for CR

• Multiband receivers
• Multiband antennas



Research Opportunities
• Meta-Cognition

• A CE for CEs
• How to manage a group of CEs?

• Which one is best for each situation?
• How to characterize them?

• How to compartmentalize a CE’s functions and 
components?
• How to evaluate a compartmentalized CE?

• Coping with imperfect observations
• Delayed
• Corrupted
• Malicious

• Decision making based on large amount of information
• What is relevant or irrelevant for each decision?



Meta-Cognition
• Meta-cognition is defined as "cognition about cognition", or "knowing

about knowing". It can take many forms, it includes knowledge about
when and how to use particular strategies for learning or for problem
solving.

• What can Meta cognition do in CR?

 Provide evaluation methods for CE techniques
 Improve the CE techniques utilization by monitoring them
Using various CE techniques with different abilities at the appropriate times.

Our current work on Meta-Cognition:
Session 5A: CR and DSA Architectures and Systems II at IC Large Auditorium
Learning Characterization Framework and Analysis for a Meta-Cognitive Radio Engine



INTELLIGENT AGENTS FOR 
COGNITIVE RADIO



Intelligent Agents for Cognitive Radio
• Definition

An IA enables the radio to have the desired learning and
adaptation abilities. The IA senses its environment (the
wireless channel), acts by using a communication method
based on its past experience, and observes its own
performance to learn its capabilities, adding to its
experience base.

• An IA for CR is commonly known as a “Cognitive Radio 
Engine,” or just “Cognitive Engine.”



Basic Cognition Cycle

Observe Decide Act



Example Link Adaptation 
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Cognitive Engine Memory
• Fixed relationships (need to be learned only once)

• Error vs. SNR
• Optimization rules

• Solutions for different objectives
• Solutions that satisfy different policies
• Solutions for specific emitters

• Volatile
• Spectrum occupancy parameters
• Primary user behavior



SIMULATION MODEL



Simulating an IA

Application Scenario 
Generator
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Symbol Error Rate Bounds and Approximations

[12] J. Proakis, Digital Communications. New York: McGraw-Hill, 4 ed., 2001.
[15] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless 
Communications. Cambridge: Cambridge University Press, 2003.



Confidence Intervals



SUMMARY OF METHODS 
USED IN COGNITIVE ENGINES



Methods used in Cognitive Engines
• Learning Techniques:

• Epsilon-Greedy  Exploration
• Boltzmann’s Exploration
• Gittins’s Index 
• Robust Training Algorithm 
• Bayesian methods (classification; confidence intervals)
• Neural Networks
• Predicate logic

• Optimization Techniques:
• Evolutionary based algorithms (e.g. Genetic algorithm)
• Other search methods

• Frameworks:
• Case-Based Reasoning

Balance Exploration vs. Exploitation

Structured way for managing past 
experience (cases)

Learn while maintaining a min perf. level

Long term optimal performance 



Genetic Algorithm
• Search technique influenced by biological evolution.
• Goal: to find a set of parameters (genes) that maximize an objective

(fitness) function
• Steps of a typical GA:

1. Initial set of solutions (population)
2. Evaluate population members’ fitness
3. Stochastically, based on their fitness, it selects a number of

members to perform a crossover and possibly a mutation operation.
• A crossover operation combines genes from two members

(parents) to generate an offspring.
• A mutation operation takes a member or an offspring and

randomly changes one of its genes.
4. The fitness of the new members is evaluated.
5. Based on the fitness level and/or the number of generations, the GA

stops and returns the fittest member as the solution.



Genetic Algorithm Continued
• Several CE’s are based on a GA such as [4–11]. Some

variations exist that may offer some advantages in certain
applications, for example, quantum encoding of the genes
expands the search range and the effectiveness of the GA
[10]. Likewise, a GA based on chaotic theory [7] exhibits
lower similarity among the members and overall improved
searching effectiveness.

• Pros: Straightforward to implement for optimizing multi-
objective functions over large search spaces.

• Cons: Although it can facilitate search over large spaces, is
not very well suited to handle stochastic fitness functions
and manage the exploration (try new methods) rate versus
using proven methods.

• Other related approaches: ant-colony optimization [12] (also
evolutionary based) ; animal flocking based such as particle
swarm optimization [13].



Case Based Reasoning
• CBR is a methodology for solving new problems by adapting

solutions to older problems.
• A problem can be a set of channel observations and

available communication techniques, and the solution can
be the communication technique or parameters that
achieve the desired goal e.g. maximum channel capacity.

• The CBR methodology assumes that the system has
memory of all the previous problems and solutions.

• The past cases of problem-solution pairs can be used as the
base of solving of new similar problems.

• A CBR system has the following life cycle:
1. Retrieve previous cases similar to the problem,
2. Reuse cases that solve the current problem or adapt similar

cases to solve the problem, and
3. Retain the solution in memory[14].



Case Based Reasoning Continued
• Examples of CBR include [15], [16] also CBR is often

used along with a GA [4], [10], [17].
• Pros: Intuitive and effective approach that provides a

structured way of providing memory to the CE. A CBR is
very effective for policy engines [18].

• Cons: The CBR is just a framework; the designer needs
to develop the similarity and adaptation methods that
best fit his or her application.

• Care is needed so that the CBR implementation will be
able to handle stochastic events (e.g. the successful
transmission of a wireless data packet.)



Artificial Neural Networks
• An ANN is an information processing system inspired by the way

human brain neurons work [19].
• An ANN is an interconnected group of artificial neurons.
• Typically, an ANN is used to learn an unknown function or to

recognize certain patterns.
• Learning is usually done by training the ANN with pairs of input

and output examples.
• Training is done using an appropriate training algorithm for the

architecture of the ANN.
• In CR, ANN are used for learning the adaptation rules [11], [20]; in

particular, in [11] a GA is used to provide the examples for the
ANN. Other ANN based works are [21–23]

• Pros: Can learn arbitrary relationships between input and output
pairs. Very useful for challenging learning situations that other
approaches many not work well.

• Cons: ANNs require extensive training and examples. They do not
provide insights on why certain outputs are chosen.



Bayesian Methods
• The Bayes rule [3] provides an elegant way to estimate the

posterior probability of an event A given that vent B occurred
using the of prior probability of A occurring and the conditional
probability of A occurring A given that be B occurred.

• The Bayes rule can be used as a classifier [24] or to estimate
confidence intervals [25] by combining prior information. Other
hypothesis testing approaches for CR can be found at [27].

• Pros: Solid method for incorporating all the information available
from current and past observations.

• Cons:
• If the application has many variables, the estimation of the

conditional probabilities for all the combinations can quickly get
very computationally expensive.

• If some of the variables are independent (or weakly depended) to
each other, then the so-called “naïve” approaches can be used
[3], [26] to relax the computation requirements.



Reinforcement Learning and Balancing Exploration vs. 
Exploitation
• A common dilemma when learning is the following:

should I use (exploit) what I know or should I try
(exploring) something potentially better? This is
commonly known as balancing exploration vs.
exploitation.

• In the next two slides we look into two common
methods used to address this dilemma. Some other
methods can be found in [28].



The 𝝐𝝐-greedy method 
• The simplest method to balance exploration vs.

exploitation [29].
• Randomly explores the different methods with

probability 𝜖𝜖 and uses the method with the highest
average throughput with probability 1-𝜖𝜖.

• 𝜖𝜖 -greedy can very effective [30], [31] when the
appropriate 𝜖𝜖 is chosen for the operating scenario.
• However, at times it may be inefficient and suboptimal.

• Pros: Simple and effective in many cases
• Cons: Its performance can be inconsistent across

scenarios.



The Gittins Index
• Gittins proved that exploration vs. exploitation can be optimally

balanced using a dynamic allocation index-based strategy [32].
This strategy maximizes the total sum of rewards collected over a
long-term horizon. The strategy is simply to use the method with
the highest Gittins index, which is based on the reward statistics
of each method and must be estimated only when those statistics
change (i.e., only when each method is used). More information
and results for CR can be found at [25], [33]

• Pros: Long term optimal, only one recalculation of the Gittins
index per time step.

• Cons:
• Performance can suffer in the short term.
• The calculation of the Gittins index is very mathematically and

computationally expensive.
• For common distributions of the rewards (e.g. normal and

Bernoulli) lookup tables [32] and approximations [34] are
available and are sufficient for most cases.



Decision Trees
• A decision tree learning (classification) method, given

training examples, constructs a decision tree with a series
of questions (attribute tests).
• Given some attributes, the tree is traversed until the arrival at

a leaf that corresponds to the most likely answer (class).
• Decision trees are better suited for discrete attributes.
• Methods exist that allow decision trees to handle continuous

attributes [35]. Gandetto and C. Regazzoni [36] use a decision
for classifying observed signals and [16] uses a decision tree
to aid in the case selection of a CBR based CE.

• Pros: Can present complex decisions in a concise way.
• Cons: They require extensive training. Extra work is needed

to accommodate continuous attributes.



Further Reading
• Artificial Intelligence [1], machine learning [37], 

decision making [38], and architectures for CRs [39] .
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METACOGNITION AND 
COGNITIVE ENGINES



Challenges with single CEs
• Most CEs are designed around a 1-2 main algorithms

• Algorithms have different performance because of their 
design and settings
• Makes them appropriate for difference operating scenarios

• Performance predictability
• A CE that can estimate its own performance is preferred



The metacognitive solution
• A meta-CE naturally 

addresses the single CE 
challenges
• It employs multiple 

algorithms suitable for 
various scenarios

• It evaluates each 
algorithm for the different 
operating scenarios

• It recognizes when each 
algorithm is more 
applicable

 

CE Algorithm 1

CE Algorithm 2

CE Algorithm 3

CE Algorithm N

Metacognition Module

Shared 
Observation 

Memory ...
Radio

Metacognitive Engine



Metacognitive Components
• Knowledge indices
• Learning curve
• Performance 

characterization

• Channel 
characterization

• Comparison 
between different 
engines

• Monitor real-time 
performance

• Adjust learning 
parameters

• Select the most 
appropriate cognitive 
engine

• Individual learning 
algorithm

• Individual memory
• Parameters

Cognitive 
Engine

Meta 
Knowledge

Meta 
Monitoring

Meta 
Control



Metacognitive Engine Operations

Best cognitive 
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Learning Curves



Estimated Knowledge Learning Curves



CE Performance (Offline Classification)



Average Meta-CE Regret (Online classification)
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MORE DETAILS AND 
RESULTS IN METHODS USED



The Bayes’ Rule 

( , | ) ( )( | , )
( , )

P S P SP S
P

=
X YX Y

X Y
LEGEND:
X: Channel data (X1: SNR, X2: Eigen spread)
Y: Configuration data (Y Combined modulation and coding
distance dmin)
S: 1 if packet successful or 0 if packet dropped



Bayes’ Rule Variations

1 2( , | ) ( , | ) ( | )P S P X Y S P X S=X Y

1 2( , | ) ( , | ) ( | )P S P X X S P Y S=X Y

1 2( , | ) ( | ) ( , | )P S P X S P X Y S=X Y

1 2( , | ) ( | ) ( | ) ( | )P S P X S P X S P Y S=X Y
Semi Naïve Bayes’ (A) rule

Semi Naïve Bayes’ (B) rule

Semi Naïve Bayes’ (C) rule

Naïve Bayes’ rule



Test Parameters
• SNR: 0 to 50 dB (51 values)
• log10(Eigen spread): 0 to 12 (25 values)
• dmin 22 values (more details on next slide)
• MIMO schemes: Beamforming, STBC, and V-BLAST



Tradeoffs between the various 
approaches

Model Mean Spectral 
Eff.1

Parameters
required

% Parameters vs
Bayes’

Bayes’ 10.5 84152 100

S.N. Bayes’ (A) 5.9 30346 36

S.N. Bayes’ (B) 8.6 30646 36

S.N. Bayes’ (C) 5 29254 35

Naïve Bayes’ 5 28248 33
1 ( 1| , ) 0.9P S = ≥X Y
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Exploration vs. Exploitation
• When the CE has limited knowledge, it has to choose

between using a configuration that is proven to work and a
more promising configuration with unknown performance at
the given channel conditions.

• This is the classical problem of balancing exploration vs.
exploitation. Exploration refers to trying a configuration that
potentially can yield better performance, exploitation refers
to using a configuration with known performance.



Goal
• The goal is to balance exploration vs. exploitation.

• In other words, to minimize the performance cost 
required for learning/finding the optimal configuration.

• In this work, the performance metric (return) is the 
achievable capacity of the system.



The Multi-Armed Bandit Problem
• The exploration vs. exploitation problem is often

studied using the Multi-Armed Bandit (MAB)
framework.

• The MAB problem assumes that one has to choose a
machine y between K machines which yields an
unknown reward Ry based on an underlying
distribution.

• The goal is to find a policy that maximizes the
expected return V(s0), where s0 is a belief state about
the machines’ return distributions:



Expected Total Discounted 
Reward

where
• E{· } is the expectation operator over a given policy starting at state s0

• a discount factor,
• R(n) the return at time index n

• Exploration vs. exploitation strategies seek to maximize V(s0); in this
work we consider two key strategies:
• The epsilon-greedy strategy
• The Gittins’ Index

0 1γ< <γ

𝑉𝑉 𝑠𝑠0 = 𝐸𝐸 �
𝑛𝑛=1

∞

𝛾𝛾𝑛𝑛 𝑅𝑅 𝑛𝑛 |𝑠𝑠 1 = 𝑠𝑠0



The Epsilon-Greedy Strategy
• The epsilon-greedy strategy simply exploits (selects the

best known configuration) 1 − 𝜀𝜀 of the time, and
explores (randomly selects a configuration) 𝜀𝜀 of the
time.

• The benefit of the epsilon-greedy strategy is its
simplicity. Its main drawbacks are:
a) It is not guaranteed to be optimal in a finite time

horizon and
b) it may suffer when the number of configurations is

very large.



The Gittins’ Index
• Gittins in [2] showed that the K-dimensional MAB problem

can be solved by using a dynamic allocation index method
that breaks the problem in a series of K one-dimensional
problems.

• The optimal policy, for each belief state s0 is to use the
configuration y with the highest index vy:

where  Ry(n) is the return of the configuration y at the nth 
trial and N a stopping time



Return Distributions
• The Gittins’ indices must be derived for the

underlying return distributions.
• Gittins’ derives and provides tables for the most

common return distributions in his book.
• In this work we consider the Normal Return Process

(NRP) and the Bernoulli Return Process (BRP)
• The BRP is applicable because the return is either 0 or

equal to the capacity of the communication method
used (if the packet was successfully delivered)



Sample Gittins Indices Table, BRP



Example

R α β ν νR

1 1 1 0.6046 0.6046
2 1 1 0.6046 1.2092
3 1 1 0.6046 1.8138
4 2 4 0.3789 1.5156
5 1 5 0.2005 1.0025



Example Continued

R α β ν νR
1 1 1 0.6046 0.6046

2 1 1 0.6046 1.2092

3 1 2 0.4118 1.2354

4 2 4 0.3789 1.5156

5 1 5 0.2005 1.0025

Assume that the last attempt failed



Test Specifics
• 3 x 22 = 66 different options
• 22 Modulation and coding combinations: from QPSK 

1/8 codec to 256 QAM uncoded
• 3 MIMO schemes: Beamforming, STBC, and V-BLAST



Notes on the results
• The term “optimal” is used to refer to the maximal

abilities of the given radio system.
• The total return is the sum of the achieved capacities

achieved at a given number of trials. Dropped packets
are counted as zero.

• Comparing the actual total return to the optimal total
return we get an estimate on the losses due to learning
• When learning cost = 0, actual total return = optimal total

return



Results

• The Gittins’ index methods outperform the epsilon-
greedy strategy

• The epsilon-greedy strategy has very good short term
performance



Total Return vs. SNR,

• The same trends as the previous table are observed
• The Gittins’ index with NRP was found to have the best overall performance
• Performance at lower SNRs is reduced because fewer options work
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Total Return vs. Trials 

•The epsilon- greedy method has
better short-term results (<50
trials).
• The Gittins’ index NRP method
has better long term performance
•The Gittins’ index BRP method
has bad initial performance, but it
rapidly improves
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Average Instantaneous Return Vs 
Trials
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Gittins' Index, NRP, γ=0.7
Gittins' Index, BRP, γ=0.7
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•after 150 trials all the methods achieve a return very close to the return achieved 
after 500 trials
At a medium SNR (left figure) the two Gittins’ index methods perform the same after 
100 trials.



Robust Training Algorithm (RoTA) 
Definitions
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RoTA Pseudocode
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Minimum Training Window Length

• The smaller the difference between the target and offsetting 
PSR, the longer the training window needs to be
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Results

• Once an offsetting method is found, the PSR stays close to the
target
• New methods are attempted with min. impact to performance
• Knowledge propagation speeds up the operation
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Results
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